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A nonlinear progressive wave equation (NPE) describes the evolution of a low Mach number
C shock wave. The NPE is the nonlinear time domain counterpart of the frequency domain

l linear parabolic wave equation (PE) for small angle propagation. The NPE in spherical
symmetry admits a similarity solution that specifies both the shape of the pulse and the shock
strength as a function of range. For finite amplitude spherical waves whether self-similar or
not, the theory predicts constancy of an impulse integral corresponding to that of linear theory.
For the self-similar waves, theory and available data are in qualitative agreement in the
following areas: (1) The shock strength decreases with range as an approximate power law;
(2) the temporal behavior of the solution at fixed range is a shock discontinuity followed by a
roughly exponential decay; and (3) the effective relaxation time behind the shock is-in / / )
reasonable agreement with data for slightly more than the first decade in range. ,

PACS numbers: 43.25.Cb

INTRODUCTION scatter than the overpressure data. The scatter about the

A number of sources give rise to waves that spend much power law (1) for relaxation time is approximately ± 30%.

or all of their lifetimes as "weak" shocks, propagating only The scaling of range by W I/3in ( I ) is easily explained by

slightly faster than Mach 1. These sources include super- dimensionality considerations. When a point source dumps

sonic aircraft,' underwater explosions,2" and a number of hydromechanical energy E impulsively and symmetrically

laboratory experiments and procedures. A shock is consid- into an infinite homogeneous medium whose pressure is neg-

ered mathematically weak when the density of the medium ligible, the only macroscopic scale size inherent to the con-

changes by a small amount (say, 20% or less) across the figuration is Lo = (E/pCol )1/3, referred to by Sedov5 as the

shock front. Underwater shocks are almost always weak, dynamic range. Here, Lo is an order-of-magnitude estimate

even though overpressures may be as high as thousands of for the shock radius at a time when the root-mean-squared

atmospheres. If overpressure is used to measure the strength fluid particle speed falls below c0. The energy E is propor-

of the shock, it is important to keep in mind that, for water, tional to the mass W of the explosive, so that scaling to L,

the relevant scale for comparison is not ambient pressure as implies scaling to W /3. The scaling ofr by W 3 reflects the

in the case of a gas, but bulk modulus = pC,' - 22 X 103 atm. inherent time scale Lo/c o.

Here, Po and co are the density and linear sound speed of The approximate power law behavior of the overpres-

water. sure and relaxation time with range is not so obvious. The

Experimental data from underwater detonation of high- simplicity of the range dependence of data summarized by

explosive charges reveal an empirical power law dependence (1) does, however, suggest some sort of similarity behavior

of the shock strength (i.e., overpressure) versus range from in the evolution of the shock wave. Similarity solutions have

the source.4 Pressure relaxation times r, = [p (dp/cdt) - ' I  long been known to be relevant to strong shocks,"6 but as-

behind the shock front also fall with somewhat more scatter sumptions regarding the dominance of the shock over the

about an approximate power law in range. Specifically, peak ambient medium fail as the shock grows weak.

overpressures and relaxation times for underwater explo- Rogers2 presented a semiempirical theory whose nu-

sions vary with a scaled range coordinate according to merical solution reproduced approximately the r - .I3 power
/ law for overpressure versus range. The range behavior of the

P, 0"024poC ( W 'r relaxation time from this theory was, however, less satisfy-

0.4 < 5rW"5 400 m kg- /3, ing. The predicted relaxation time increased too rapidly with

r, = 92.5x l0- 6 W1" 3( r/W11 3 ) 22, (1) range close to the source and then too slowly far from the
source. The empiricism in this method lay in imposing the

0.4 5W ' <40 m kg - 13, assumption (with some support from available data) that,

where r is the distance from the explosion in meters, Wis the just after the passage of the shock past a fixed range point,
TNT equivalent mass of the explosive charge in kilograms, the temporal behavior of the overpressure was an exponen-
and r-, is in seconds. Overpressures from a number of shots tial falloff. Actually, this behavior can hold only for a limited
involving different explosive charges fall within about time, for the density profile must change sign at some point
± 20% of the power law over approximately 3 decades in in order to conserve mass. This will be discussed further
the scaled range.2 Relaxation time data are subject to more below. The solution method of Ref. 2 employed a one-di-



ens et-t of characteristics immediately behind the of the linear wave equation in spherical symmetry:
Addck folloived~ty an approximate adaptation to spherical a 2R

" 1mmetry. #.o, , 2 = 9t 2

In contrast, the e66i used here begins with a reduced
nonlim waveequa .urate to second order n thden- In this solution, mass conservation relies on a consistency

'k, ity perturbation. A fie imilarity solution is extracted in condition referred to as the conservation of impulse:
"which time and rang'64e1endence enter through a single ft F
variable O1'r. Our results show a more rapid dropoff of f J
overpressures near the source than Rogers' predictions. The The integration limits in (7) extend over the entire range
relaxation time prediction from our theory is in better agree- wherefis nonzero. The second form of this condition will be
ment with data at close ranges, but also flattens off far from shown also to apply to nonlinear spherical waves. Since Eq.
the source. (2) retains only linear and quadratic terms, the assumption

I. THE NONUNEAR PROGRESSIVE WAVE EQUATION of constant p allows 6 to be absorbed into a scaled density
(NPE) perturbation

The propagation of three-dimensional finite amplitude s =/Pi/Po. (8)
acoustic pulses subject to refraction, diffraction, and nonlin- The resulting equation for s is then
ear steepening is described by a nonlinear progressive wave as . /
equation (NPE) derived in a related article.7 The NPE has - - Co 0  + (9)
been shown' to be the nonlinear time domain equivalent of

the frequency domain parabolic wave equation (PE).9 The where
NPE for a spherical nonlinear wave in a homogeneous medi- 0(s) = s + s2/2.
um is An immediate result of (9) is that the location of a contin-

8 1 (R+BR2 )+ 0 (R3 - ) , (2) uous zero crossing (s = 0) propagates at a speed Co.

where II. SIMILARITY SOLUTION

R = pPo. (3) A similarity solution to (9) may be found by combining
the independent variables r and t into a single independentHere, p, is the density perturbation, and variable cot Ir. A solution is sought in the form

'= I + 2 p + , ,og "l (4) s=s7), ,7=cot/r. (10)
Substituting (10) into (9) leads to

In Eq. (4) 0 is a thermodynamic quantity referred to as the ( I d s
medium's coefficient of nonlinearity. For a perfect gas with 1 -
specific heat ratio r, # (1 + y)/2. The value of# for wa- ( ds )-d (S) ((s)
ter is approximately 3.5. The derivatives in (4) are taken The nonlinear partial differential equation (9) is thus con-
from an adiabatic equation of state for the medium. This is verted to an ordinary differential equation for a restricted
permissable in our model, since for a weak shock, heating class of solutions of the form (10). Equation (11) may be
(entropy increase as opposed to adiabatic compression) is integrated for general 0(s) by interchange of dependent and
proportional to the cube of the density jump.10 An estimate independent variables to yield
of the smallness ofshock heating can be obtained from Table ds
2.1 of Cole3 for a water shock of overpressure p = 5000 O =-- 0(s) - 2  (12)
atm (an approximate upper limit to the region of applicabili- F s i ()2
ty of our model). Immediately behind the shock, the total For '(s) asgiven in (9), (12) becomes
temperature increase (adiabatic compression plus entropy 7=1 + s + s(1 + s/2)log[ lasl/(s + 2)], (13)
generated at the shock) A Tis approximately 5 *C. Values for where a is a constant of integration. Equation (13) implicit-
T AS reveal that, upon return to atmospheric pressure, the ly defines s as a function of 17, i.e., the self-similar overdensity
water is heated by only about 1.3 C. We maintain that this profile as a function of range and time. Equation (13) gives
reflects comparison of a cubic to a quadratic effect when Ap/ I-. as s-0, leading to a zero crossing at r = cot for all a.
poCo =0.25. (The fact that the constant of proportionality in
this comparison is near unity is fortuitous.)

Equation (2) describes the evolution of a finite ampli- Ill. SHOCK PROPAGATION
tude compressional wave in the farfield of a spherical source. We seek solutions describing shock jumps with an un-
Inherent in the derivation of the nonlinear term in (2) is the disturbed medium ahead of the discontinuity and the contin-
assumption that it applies to a wave whose gradient scale size uous profile (13) behind it (or between discontinuities in the
at a point is much less than the radius r from the origin. In case Of an N wave shock). We must show that the jump
the absence of the nonlinear term, (2) describes exactly out- conditions at the shock can be satisfied by the similarity vari-
going spherical wave solutions ables in a consistent way. The form of Eq. (9) is such that

R -ftr - cot)/r (5) results of shock physics can be applied directly. Assuming a 11406 J. Acot.t Soc. Am.. Vol. 64, No. 4, October 1 96 B. E. MOOCU. m id J. AIbSII: Slmn'irty solution 1406

iI



discontinuity between values to the left and right of the overdensity versus range relation. The result can then be
shock (denoted by subscripts I and r), the requirement of expressed as overpressure via the equation of state.
mass conservation across the shock specifies the speed at
which the shock front propagates (i.e., the Rankine-Hugon- IV. ASYMPTOTIC BEHAVIOR FOR SMALL
jot relation): OVERDENSITY

dr 0(s-0 To demonstrate that (18) leads to an approximate pow-
-C- c +-). (14) er law relation, we truncate (13) at first order ins and substi-

tute into (18) to find
The second expression in (14) assumes that the shock is a
jump from s = 0 to s = s,. The subscript s denotes evaluation d log 1 + 1
on the nonzero side of the shock. The above equations allow d log rs  2 log las3/21 + 4
evaluation of time derivatives of r,, 7,, and s, as algebraic Anticipating that the constant a is of order unity, the de-
functions of the similarity variables and time. From (10) nominator on the right-hand side of (19) is a large negative
and (14), number for small s, and the right-hand side is of the form

dn, 9, - 1 - e, where c is a small, slowly varying positive quanti-
=[1 -=tl1+ -) I]. (15) ty. Thus an approximate power relation between overdensityFrom()and( 15 ), we have and range is to be expected. In the limit of smalls, (19) leads

to

ds, - ds d-, s, =const r, I log s I - 12. (20)

dt dd Since s and r, are approximately inversely proportional, the

_( + ± )~(l 2(1 s,. logarithm on the right-hand side of (20) can be replaced to
t 22(1 + s. -q- 7 read

(16) s, -const r[ I [log(rlro) I -1 2, (21)

At this point, the similarity solution is conc,.ptuaily com- where r, is an arbitrary constant. This asymptotic behavior
plete. If one is given a physical overdensity field correspond- recovers a well-known result.3.11
ing to a self-similar weak shock at an instant of time, -q, is the
radius of the zero crossing behind the shock divided by the
radius of the shock; s. is determined by the overdensity at the V. PLANAR FORM: N WAVES
shock according to (8), and t is the radius of the zero cross- The planar equivalent of Eq. (I I) yields a solution that
ing divided by co. The constant of integration could be deter- can be shown to satisfy the Euler equations exactly, and
mined by solving (13) for a, substituting the known values agree with an assumed adiabatic equation of state through
for s, and %. From this point forward, the shock jump can be second order in the overdensity. For a plane wave, the l/r
integrated forward in time using (16). At any future time, term is absent from (9) and, as a result the right-hand side in
the shock profile as a function of range would be specified by (I 1) is zero. Removing a factor ds/dq (i.e., ruling out the
(13) from the zero crossing r = cot out to the shock radius, trivial solution s = constant), Eq. ( 11) becomes an algebra-
r, = ct /1,, with s = 0 for r> r,. ic expression whose only solution is

For comparison of results predicted here with data, it
remains to give an expression for the density relaxation time d-

behind the shock, r, = -s(slo) -,. From equations ds

(9)-(1), or

'rs k d= - , or
I-' _d L = t i-- l-S 2 (17) p----pol + (r -cot)116cot] (22)

q ds I +s/2 At any given time, the spatial form of the density perturba-
This gives the density relaxation time, whereas comparisons tion is a linear ramp. When the ramp has a zero crossing
are to be made with pressue data. The conversion factor for midway between shock discontinuities of opposing sign, the
translating density to pressure relaxation time is 8l log Pt/ result is an N wave.
l log p, taken adiabatically from the equation of state. The following procedure can be used to show that (22)

The time coordinate can be eliminated from (14) and satisfies the fluid equations to the stated accuracy. Equation
(16) to yield an equation in which the shock radius is the (22) for the density can be substituted into the mass continu-
independent variable: ity equation, allowing a direct integration for the mass flux 1

pv. The mass flux and density can then be substituted intod lgs, , . d +s'). the momentum equation, allowing integration for the pres-
d log r, s, dt I -sure. The result is in agreement with a perfect gas law with -

(18) error cubic in pi.

The light-hand side of (18) involves only similarity vari- Shock parameters for the planar similarity solution are I
ables, so that from (18) and (13) one can construct the easily integrated from (22) and (15). The shock range r.,

"ag J. Aeoust. Soc. Am., Vol. 84, No. 4, LCtotj. 1908 B. E. McDonald nd J. Ambros*o: Sintwyit soluton 14"
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shock jump s, and relaxation time r', behind the planar satisfy the integral condition, it will respond by producing a
shock are trailing disturbance that offsets the imbalance. The next sec-

, =c't .bt 2 ) tion shows that mass conservation depends upon impulse
0,-2 (23) conservation, just as in the linear case.

s=bt- 112, (3

I. = bt /2/(l + bt -/ 2), B. Impulseconrvatlion

where b is an arbitrary constant. In the planar solution, the Equation (9) possesses an integral of the motion for any
shock overdensity is predicted to fall off as approximately solution s(r,t), which is a generalization of the linear im-
the inverse square root of range, while the relaxation time pluse integral (7). The result should be viewed as an exact
behind the shock is predicted to increase approximately with result of an approximate equation, so that, in fact, it gives a
the square root of range. quantity that is conserved to second order in the density

perturbation. Defining
VL CONSERVATION PROPERTIES
A. Mas Integral I E rs dr, (27)

Mathematical conservation properties result from Eqs. where r, denotes either r, or r2 above, Eqs. (9) and (14) give
(9) and (14) for any solution s(rt). These properties were
not maintained nor discussed in the previous similarity theo- I = kr~s. + r - dr
ry for weak shocks.2 This point does not invalidate that theo- I', t
ry, it having been based on empirical observation. ( + r2

In applying the mathematical solution given here to = Ct cs5 , + --CoJ_ s+- dr=O. (28)
physical systems, one must bear in mind the caveat that neg- 2 is o ar r i

ative fluid pressure cannot exist. A negative density pertur- In (27) and (28), it is not necessary to specify whether r, is

bation can exist only to the extent that the total pressure greater than or less than cot. The result is that integrals ahead

remains non-negative. Density perturbations below this lim- of and behind r = cot are conserved separately. Thus, even

it in water would indicate regions containing cavitation bub- allowing for the dissipation implicitly present at a shock

bles. front, the integral (27) remains constant for a spherically

The plane-wave solution (22) and (23) possesses a expanding shock to second order in the overdensity. Contin-

mass integral: uous profiles are included by admitting a shock jump of zero.

With this result, it is now possible to give the condition

= f s(rt) dr = cb (24) for mass conservation analogous to (7) for linear waves. In
2 (26), r, and r2 refer to locations of shock jumps of opposing

Mass fluctuations ahead of and behind the zero crossing at sign with a continuous profile crossing zero in between. If
r = cot are separately conserved. This follows straightfor- the integral (27) for the positive portion of the profile exact-
wardly from Eqs. (22) and (23). Spherical wave solutions of ly offsets that for the negative portion, then the integral of

Eq. (9), however, do not explicitly conserve mass for two the linear term in the last line of (26) is zero for all time. The
reasons. The first is the omission of high-order terms in ex- quadratic term in (26) must now be considered. The limits
tracting Eq. (2) from the Euler equations. The second and of integration r, and r2 can be shown to differ by an amount
more basic reason is the consistency condition (7) on outgo- that scales roughly with the magnitude of s. This can be
ing spherical wave solutions of the linear wave equation dis- argued directly from (14). [ More convincingly for self-simi-
cussed earlier. The spherical analog of (24) is lar solutions, the discussion of Fig. I below reveals that

r' r, - cot- r, (2.5s, )' " over much of the domain of interest. I
M, = 4r, r2s(rt) dr, (25) Then, the integral of the quadratic term in the last line of

(26) scales roughly as the cube of the amplitude of s. Thus,
where a continuous profile is assumed between shocks at r, when
and r2. Outside (rI,r2), s is taken to be zero. Continuous
nonlinear pulses are tactily included in this discussion by rs dr = 0, (29)
allowing that the magnitude of the shock jumps at r, and/or
r2 may be zero. mass is conserved to within the accuracy of the reduced wave

Let us consider a solution s(rt) which may or may not equation, (9) i.e., to second order in the overdensity. Eq.
be self-similar and calculate from (9) and (14) the time (29) is the proper generalization of (7). In fact, they both
derivative of M,,: can be stated in the form (29), provided that the limits of

r',as integration for linear wave propagation be interpreted not as
=, = 4ir'.t,, -1 4, - dr shock locations, but as limits outside which the density per-

turbation is z.-ro.

= 4rCoJfro(s) dr = 417rcof s + tdr. (26) VII. RESULTS

In analogy with the linear consistency condition (7), mass Figure I gives the similarity solution ( 13) for three val-
conservation requires the last integral on the right-hand side ues of the constant of integration a. The particular values
to be zero. Physically, if a wave is generated that doa not 0.5, 0.7, and ;#.s wte dwasen to fit relaxation time data as

1500 J. ACt. Sot. Am., Vol. 34, No. 4, October 198 13. E. McDonald and J. Arnrosmao: Skmnlarfty molufl 1500
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FIG. I. Scaled density perturbation s as a function of 7 cot/r from Eqs.

(8) and (13). Curves are labeled with the values ofa used. Log-log format DIFFERENCES MAGNI F IE0reveals an approximate power law relation between sand (I - '7). 2 0 r---

1 6 M O E - . 13 -

discussed below, and to illustrate the sensitivity of experi- 0 - -

mental measurables to profile changes. For s values between a g - 0
roughly 10-" and 102, an approximate power law relation M ,
exists with s u-e0.4 ( I - 17)12.

The overpressure versus range is integrated numerically 2 C - 1
from (18) with q given in terms ofs in (13). Two free pa- X -_ _-_

rameters must be specified: the pressure level at the initial F .- -------
o N.

range point and a in (13). In Fig. 2, the result for the ° ' -- :-. -Z
overpressure versus range is given, with the initial pressure
set to a value that gives reasonable agreement with Eq. (1). K

Pressures are calculated from an equation of state truncated
after second order in s:

P-- + (,6- 1) (30) 4

where fl is taken to be 3.5 for water. Shown also in Fig. 2 are RAKE (0, G0, 0,
results from Rogers' theory.2 Our theory gives higher pres-
sures at close ranges than Eq. ( 1) This is reasonable since

FIG. 2. Shock pressure versus range from the empirical power law (1);
overpressures should fall off faster than (1) at close ranges. from numerical integration of (13), (18), and (30) (labels given in the

Figure 3 gives pressure-time series at a fixed range from legend are the a values used); and from Rogers' theory2: (a) log-log plot;
Eq. (13) for c, = 1530 m/s. These curves do reflect an ap- (b) semilog plot to magnify differences.

proximate exponential decay after the shock discontinuity,
in agreement with observations. It is apparent that the ener-
gy and momentum in the shock increase as a a decreases. In
an actual explosion, the nature of the overdensity profile Higher-order terms are estimated to change this result by
produced would depend on the details of the energy release less than 4%, which is much less than experimental uncer-
process and would likely involve the Mach number of the tainty. Agreement with data is better than Rogers' theory2

shock front while the shock is still strong. predicted at close ranges. This appears paradoxical, since
In Fig. 4, pressure relaxation times versus range are giv- Rogers' result for peak pressure is closer to the data in this

en from the following expression derived from Eqs. (17) and region. Both theories do, however, tend to flatten out and
(30): underprcdict the data at higher ranges. One likely explana-

tion for departure from data is that a real explosion in gen-
Slogs = *,[1 - (1 -,6 -')s] + 0(s2) eral would not produce an initially self-similar profile, but

3 log p, such a profile could evolve over a finite propagation path. N 1
(31) The data shown in Fig. 4 are gathered from three sources, as

1501 J. Acoust. Soc. Am., Vol. 84, No. 4, October 1988 B. E. McDonald and J. Ambrosano: Similarity solution 1501
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TIME SERIES AT RANGE 1.0 {M/KG--I/31 One possibility is depth variation of ambient pressure (or
.000 other parameters) neglected here. Effects of environmental
on variation would emerge supposedly at long ranges; this is, in

.026 fact, where theory and data begin to disagree concerning the

.024 behavior of the relaxation time.

.022

.020 VIII. SUMMARY

.0,, The nonlinear progressive wave equation (NPE) is an

S.016 approximation to the Euler equations for nonlinear
014 compressional waves in an inviscid fluid and, in fact, is the

time domain equivalent to the parabolic equation (PE)

.02 when nonlinearity is omitted. In spherical symmetry, the

010 NPE possesses a similarity solution that accounts for the

DW following basic features of spherical shock waves generated
.W4 in underwater explosions: (1) an approximate power law
.004 F relation between shock overpressure and range; (2) shock
.D-W relaxation time increasing roughly as a power law for ap-

011- proximately I decade in range near the source; and (3) pres-
.,,6 48 12 .5 .56 5 60 62 F" 66 sure-time profiles resembling exponential falloff from the

TIME (K S/K<G--1/3)

shock peak. As in a previous semiempirical similarity theo-
FIG. 3. Pressure-time series at fixed range as computed from ( 13) and (30) ry,2 two free constants determine the solution. In the present
for the specified values of a, with p, taken from the result of Fig. 2. theory, they are the overpressure at an initial range point,

and the constant of integration a in Eq. (13). For plane
waves, the theory predicts Nwave shock solutions with peak
overpressure varying as the inverse square root of the

indicated. It is unfortunate that no one data set covers more elapsed time and relaxation time varying directly as the
than a factor of approximately 25 in scaled range. The simi- square root of the time. Both of these lead to approximate
larity solution for a = 0.7 fits the Cole data set reasonably, power law variation with range. Only one free parameter is
but the two Arons data sets are not described particularly available for plane waves: the shock strength at a given
well by any of the theoretical models, and in fact, seem to range.
disagree with each other. Thus the behavior of the relaxation For discrete nonlinear pulses with or without shocks,
time at long ranges remains only partially understood. 2  the present theory predicts an integral of the motion given in
This could indicate mechanisms not included in the theory. Eq. (27) for solutions s(r,t). In Eq. (29), the theory also

demonstrates that this integral is a generalization of the lin-
ear impulse integral (7).

TIME VS RANGE Discrepancies between the current theory and data are
RELAXATION T] RAlikely due to four assumptions made here to simplify the

solution. First is the reduction of the fluid equations to a
first-order nonlinear wave equation; second is the neglect of
cubic and higher-order terms in the density perturbation;
third is the assumption of self-similarity; and fourth is the

o -assumption of a homogeneous medium ahead of the shock.
One is assured that in the early phases of shock wave devel-

-"opment (e.g., in explosive energy release or passage of a su-
personic projectile) only the fourth is reasonable. The degree

° 10'to which the current theory describes experimental results in

later stages is then a statement about the dying out of tran-
/ (' W ' , -sients and the progression toward a final state described by

W 3. 34 0 self-sim ilarity.
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of linear theory. For the self-similar waves, theory
and available data are in qualitative agreement in the
following areas: (1) The shock strength decreases with
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19. Abstract (Continuation)

behavior of the solution at fixed range is a shock discontinuity followed
by a roughly exponential decay; and (3) the effective relaxation time
behind the shock is in reasonable agreement with data for slightly more
than the first decade in range.


